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Abstract: The Fukushima nuclear accident reminds us of severe risk of radioactive
substances. Citizen scientists voluntarily collect and share radiation data using geo-
tagged sensors for radiation preparedness. However, radiation levels are affected by
a number of factors including for example weather conditions, naturally occurring ra-
dioactive materials (NORM), and large marble structures. It is therefore difficult to
determine whether a higher radiation level comes from a normal variation in back-
ground or not. This research analyzes the radiation changes using surface networks
that can be used to characterize complex surfaces. A new algorithm has been devel-
oped to identify salient peaks and their hills by merging insignificant peaks recur-
sively. Salient peaks and their hills are converted into graphs. The structural simi-
larities of graphs were compared over time. The radiation measurements in the city
of Koriyama, Japan were analyzed as a case study. The results demonstrated that
structural analysis of dynamic radiation levels revealed stable changes, while numeric
analysis of radiation levels presented statistically significant differences. This method
is able to detect radiation level changes irrespective of background variations.
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1 Introduction

Radiation levels have been a subject of major debate after a nuclear disaster – Fukushima
Daiichi accident – released substantial contamination into our environments. Citizen
scientists, as it came to be known, started gathering and sharing environmental ra-
diation levels using mobile detectors (e.g., Geiger counters) across the world due to
awareness of health effects. In particular, the non-profit organization such as Safecast
has been building a radiation sensor network from crowd-sourced data. Its data points
have been over 25 million at the end of 2014 [1].

While an immense number of radiation sensors quantify the levels of radiation in
our environment, it is difficult to understand accurate radiation levels due to back-
ground variations [29, 18]. For example, some regions have naturally occurring ra-
dioactive materials (NORM); weather such as precipitation causes the increase of back-
ground levels, or background levels have a tendency to increase as a result of the pres-
ence of large marble structures. It is challenging to predict whether the amplitude of
the count rate is due to the possible release of radioactive materials or not.

However, looking beyond direct background effects on radiation levels, this paper
investigates how the structure of regions of higher count rates have changed as time
varies. We assume if radioactive materials are continually stable, the structure of the
regions of higher count rates would have similar patterns, irrespective of background
fluctuations. In this paper, the regions of higher count rates are represented by surface
networks, consisting of critical points (peaks, pits, and passes) and critical lines (ridges
and channels) [24, 25]. We particularly focus on salient peaks and their hills such as
catchments areas. Salient peaks are connected by edges. Such a graph between sub-
sequent time steps have been analyzed and compared using graph structural analysis
techniques [26]. The structural analysis can provide dynamic radiation level changes
without knowing accurate background variations.

In the reminder, the following section starts by discussing the previous compu-
tations of surface networks and structural similarity measurements between surface
networks. Section 3 describes the data processing for parsing and filtering radiation
data set. Section 4 provides a surface network algorithm presented in this study. In
addition, this section provides the information about analysis methods. Section 5
presents evaluations of structural analysis. The results confirm the effectiveness of
the approach, discussed in Section 6. Finally, the conclusions and future works are
drawn in Section 7.

2 Background

This paper utilizes spatial reasoning for identifying radiation level changes. The radia-
tion level changes may be identified by using cluster analysis from a group of radiation
measurements. However, it is difficult to separate radiation measurements appropri-
ately because radiation levels are floating at even the same location due to background
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effects.
In this paper, radiation measurements are converted to raster maps. The radiation

scalar fields (i.e., raster maps) are characterized by surface networks. The regions of
higher count rates are represented as peaks and their hills on the surface network. The
structural similarity of surface networks are compared in order to infer radiation level
changes.

Surface networks originate from the work of [6, 17], which do not describe the
Earth’s surface as hills and valley, but also propose relations between the number of
peaks, pits, and passes. In a later, Morse theory uses differential topology generally
to define surface networks [19]. Morse theory pertains to the relationship between the
shape of the space and functions on defined on the space. If the derivative of a height
function z = f(x, y) equals to zero at a point (x0, y0), this point (x0, y0) is called a
critical point, if and only if the determinant of the Hessian matrix

( fxx(x0,y0) fxy(x0,y0)
fyx(x0,y0) fyy(x0,y0)

)
is not zero, where fxx, fxy, fyx, fyy are partial derivatives of the height function, z [16].

There are broadly two approaches to construct surface networks from continuous
surfaces to discrete data structures: explicit and implicit cell complexes.

Explicit cell complexes can be regarded as triangulations. The critical points are
extracted from the triangular mesh by comparing values with adjacent points [30] or
piecewise linear functions [10, 8]. Illicit cell complexes make use of a grid such as
raster-based DEMs [23, 35]. We use a grid configuration of each radiation measure-
ments (i.e., a raster map). In particular, we focus on the detection of peaks and their
hills because our purpose is to identify regions of higher count rates. The hills of peaks
are called as Morse complexes [8]. One example for using Morse complex is to analyze
and track burning structures [3].

Based on a raster map, there are several ways to identify critical points. [23] use
local comparisons between eight direct neighbors. Local comparisons are known to
identify spurious critical points due to continuity constraints [27]. [34, 35] uses bi-
quadratic interpolation as well as geomorphological parameters, which help to re-
move spurious critical points. However, geomorphological parameters (e.g., slope and
curvature) can not guarantee that all peaks are identified due to the violation of geo-
morphological parameters’ constraints, although geomorphological approach is good
at removing spurious critical points. The regions of higher does rates are important
in our application. In such context, this paper presents a new algorithm for identify-
ing salient critical points (i.e., peaks) in a radiation scalar field using prominence (i.e.,
the relative height difference between adjacent peaks) and horizontal distance (i.e.,
distance between adjacent peaks). Our approach recursively removes insignificant
peaks.

In terms of measuring similarity between surface networks, there is very few re-
search on the structural analysis of surface networks. One example is to calculate
structural similarity index for the analysis of urban population surfaces [21]. In the
first step, identified surface networks are generalized by removing peaks that have the
minimum difference in height with associated passes. Critical points are then sorted
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based on the height. Sorted critical points are continually deleted until there is only
one peak left. During this process, structural similarity index is given if two surface
networks are isomorphic. However, this approach is ill-suited to our problem in the
sense that background fluctuations lead to different radioactive levels in spite of the
same count rates in reality.

Another approach is to use graph theoretic indices (e.g., density or connectivity) to
analyze the surface and its changes over time [12]. However, graph theoretic indices
are not enough to characterize radiation level changes because a network connectivity
can be different without significant radiation level changes. None of approaches en-
countered are directly applicable to our problems. Therefore we adapt graph similar-
ity measurement techniques for quantifying the similarity of surface networks. There
are a broad range of applications in graph similarity scoring and matching techniques:
chemical structures [14, 32], social media [5, 20], web searching [2, 9] or medical diag-
nostics [28].

In summary, this paper provides a new algorithm to identify salient peaks among
spurious peaks. In addition, the structural similarity of surface and its changes are
measured using graph similarity scoring and measuring techniques. We demonstrate
that this approach can provide global radiation level changes without accurate back-
ground measurements.

3 Data processing

Based on our previous literature review, we will now proceed with data processing
for the analysis of radiation level changes. We acquired experimental radiation data
set from Safecast in February, 2015. The data size is over 26 million records and over 3
GB as a csv file format.

The experimental area was selected in Japan because citizen scientists have been
gathering substantial numbers of radiation measurements across Japan. Our experi-
mental region is the city of Koriyama that is 82km away from Fukushima Daiichi nu-
clear power station (i.e., WGS84 bounds are 140.32564, 37.36191, 140.40993, 37.43678).
We gathered all measurements each month in 2013. Thus, there are twelve data set for
the city of Koriyama.

In order to analyze a large volume of data, we exploited Apche Pig and Hadoop.
The former is a programming language designed to ease the development of dis-
tributed applications for analyzing large volumes of data. The later can be thought
of distributed computing framework designed for processing large distributed data
[22]. By using Pig and Hadoop, we can derive experimental data set with ease and
speed.

Finally, all measurements per month are converted into raster maps using Empiri-
cal Bayesian Kriging (EBK). EBK is well known to have smaller prediction uncertainty
and the ability to filter out measurement errors [15]. These interpolation maps have
been used as the cornerstone for identifying surface networks as well as analyzing
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Figure 1: Prominence and horizontal distance between Peak1 and Peak2. This figure
is adapted from [7].

radiation level changes.

4 Surface networks

In this section, we explore a new algorithm to identify peaks and their hills in a radi-
ation scalar field. Further, the analysis methods are presented: how well surface net-
works reflect the radiation measurements; numerical summaries of surface networks’
structure; and structural similarity of surface and its changes over time.

4.1 Identification of peaks and hills

In order to explain an algorithm, it is necessary to mention basic definitions related
with critical points.

In brief, a peak, pk is defined as a cell that all neighbors of pk have a lower value
than pk. The ascent vector, av of an each cell is defined as the unique directed edge from
that cell to its one-hop neighbor with the highest value of all neighbors. Prominence,
prom is described as relative height difference between adjacent peaks. These basic
definitions have been already defined by previous works [30, 13, 7]. In addition, we
can add another definition such as a horizontal distance, hd between adjacent peaks.
Prominence and horizontal distance are mainly used to remove spurious peaks in our
algorithm. Figure 1 illustrates prominence and horizontal distance.

Based on definitions mentioned above, the algorithm proceeds as follows:
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• Each cell decides its ascent vector by comparing values with direct eight neigh-
bors (Algorithm 1, line 7). If a cell has the highest value among neighbors, this
cell becomes a peak (Algorithm 1, line 4)

• Each peak broadcasts top-down sweep messages to neighbors. Each cell updates
its peak identifier, pkid based on its av’s peak identifier (Algorithm 1, line 9).
During this process, if there are neighbors that have a different peak identifier,
this cell becomes a channel (i.e., the direction of ascent vectors are divided at
channels into different peaks).

• Peaks are recursively merged using prominence and horizontal distance (Algo-
rithm 1, line 11).

• All cells’ peak identifier will be updated and reconciled if a cell has an disap-
peared peak identifier (Algorithm 1, line 17).

Algorithm 1 Identifying peaks and their hills

1: Input: Raster-based radiation grid, prom: user defined prominence threshold, hd: user
defined horizontal distance threshold

2: Local variables: an ascent vector, av, initialized empty; a peak id, pkid, initialized empty
Step I

3: Comparing radiation values with direct 8 neighbors
4: if a cell has the highest value among neighbors then
5: this cell becomes a local peak (pk) - -local comparisons between direct 8 neighbors
6: else
7: set av := one of neighbors’ peak identifier that has the highest value

Step II
8: Top-down sweep from local peaks
9: set pkid := av’s peak identifier

Step III
10: Remove insignificant peaks - -Considering all identified peaks
11: if peaks are adjacent to each other then - -There are channels between two peaks
12: if relative height < prom then
13: if horizontal distance < 1.5 × IQR and horizontal distance < hd then
14: set pkid := adjacent peak’s identifier - -If there are no more two adjacent peaks, we

use a default horizontal distance

Step IV
15: Merge peaks and hills
16: if an insignificant peak identifier is merged into a new peak identifier then
17: set pkid := new peak’s identifier - -Update a peak identifier if a cell has an disappeared

peak identifier

In particular, step III can remove spurious peaks. There are two steps. First, if
the relative height between adjacent peaks meets a threshold prominence, a peak that
has a lower height will be merged into another peak. Thus, we can generalize the
surface networks if a radiation difference is negligible. This is a similar approach of
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Wolf pruning [33] in terms of simplifying surface networks using relative height. Next,
each peak has usually several adjacent peaks. When we repeat the merge process, we
consider the distance between adjacent peaks because spatially near measurements are
more related. If a horizontal distance between adjacent peaks is far away compared
with other adjacent peaks (i.e., horizontal distance > 1.5× interquartile ranges (IQR)),
the algorithm does not merge adjacent two peaks. The interquartile ranges can be
calculated with distances from other adjacent peaks. If there are only two peaks such
as a very smooth field, we can use a user defined threshold distance.

(a) Initial identified peaks and hills (b) Salient peaks and hills

Figure 2: Identification of salient peaks and hills at Koriyama in May 2013

Figure 2 presents how the initial identified peaks are merged into salient peaks.
317 peaks are initially identified in Figure 2a. The number of peaks are then reduced
to 73 in Figure 2b. In addition, Top 5 representative peaks are highlighted using bigger
triangle symbols in Figure 2b. These peaks and hills are main interest in our radiation
level analysis (see Section 5).

4.2 Analysis techniques

Three analysis methods are exploited in this paper: feature based parameters for an-
alyzing the correlation between identified surface networks and radiation measure-
ments; graph indices, and graph structural similarity for comparing surface networks
over time.

First, identified surface networks were measured using feature based parameters.
There are a couple of feature based parameters, including the absolute peak height,
the peak area, the peak volume, the peak curvature in sliding direction, or the peak
density per unit area. These feature parameters have been used to understand the

Article submitted for review



8 MYEONG-HUN JEONG, SHAOWEN WANG, CLAIR J. SULLIVAN

surface functional performance in nanotechnology [11, 31]. We will use the absolute
peak height to measure the relationship between feature based parameters and the
numeric calculations of radiation measurements. If the radiation measurements are
reflected in the identified surface networks, the feature based parameters correlate
well with the radiation measurements.

Next, surface networks were distilled based on graph theory. Graph indices can
provide succinct numerical summaries of the network structure [12]. Graph density
and connectedness are used to describe the network structure in this paper. In brief,
the density refers to the number of observed edges over the number of possible ones.
The connectedness indicates whether there exists an undirected path from a node u to
a node v in a graph [26]. If both values equal to one, the regions of high count rates
are densely clustered.

Lastly, we can analyze the surface network and its changes over time using struc-
tural similarities. The basic idea is to establish a matching between the edges of one
graph and the edges of another using density [4]. The structural correlation can be
derived from structural comparison measures. For example, if the structural correla-
tion = 1, the graphs are isomorphic. We use the SNA R package to calculate structural
correlation. This package provides a wide range of graph analytic functionalities [5].

Analysis methods mentioned above were experimentally conducted and tested in
the following section.

5 Results

The following section started by investigating the numerical analysis of the raw radi-
ation measurements. The algorithm described in the previous section was evaluated
with the relationship between feature based parameters and numerical analysis of ra-
diation measurements. In order to measure radiation level changes, the structural
variations of surface networks over time were analyzed with graph indices and struc-
tural similarity correlations.

5.1 Numerical data analysis

Figure 3 presents the spread of radiation measurements. It is clear that there was a
significance difference for each measurement. This visual impression was confirmed
using statistical analysis, which is to find whether there is a statistically significant
difference in radiation levels between each month.

As you may expect, the data violated the normal distribution assumption
(F (11, 510299) = 1048.5, p < 0.05). Robust alternative one-way ANOVA test (i.e.,
Kruskal-Wallis test) was used for non-normal distributions. There was a statistically
significant difference between each month (H(11) = 48220.16, p = 2.2e− 16). We con-
ducted a follow-up analysis such as pairwise comparisons using Wilcoxon rank sum
test to present which dependent variables (i.e., month) show a significant difference.
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(a) The city of Koriyama, Japan in 2013

Figure 3: Boxplot of radiation levels split by month: 7 measurements over 1000 cpm
were removed from the figure.

There were no significant differences between February and June, and February and
September (p > 0.05), while presenting significant differences on other cases.

However, it is difficult to mention that there were significant differences in radia-
tion levels in the city of Koriyama in 2013. These significant differences may be due
to background variations such as precipitations. Further, there is not enough infor-
mation to quantify background effects on the radiation levels, which makes it difficult
to understand the real changes of radiation levels. Therefore, the following sections
investigate the dynamic radiation levels using spatial structures of surface networks.

5.2 Feature based parameter analysis

Feature based parameters can provide information about how identified surface net-
works reflect the original radiation measurements. The feature based parameters (i.e.,
the average of absolute height) were calculated from the top 5 representative peaks in
Table 1.

The correlation between the average of absolute height and the mean of radia-
tion measurements was analyzed using Pearson’s correlation coefficients, r. The null
hypothesis is that there is a no correlation between feature based parameters and
the mean of radiation measurements. The result indicated that the average of abso-
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Table 1: Results for the mean of radiation measurements and the average of absolute
height of top 5 representative peaks per month in 2013 (The unit is cpm).

1 2 3 4 5 6 7 8 9 10 11 12
Mean 77.23 91.75 91.53 100.9 93.31 88 88.31 96.32 87.55 102.9 64.15 66.38
Height 149.71 166.70 156.42 163.88 178.21 159.26 145.19 172.93 158.04 215.55 134.97 149.58

lute height was significantly related to the increase of the radiation levels, r = 0.74,
p = 0.004. In terms of effect sizes, the correlation coefficient, r is greater than 0.5. It
can be interpreted as a large effect. Therefore, the radiation levels are appropriately
reflected in the surface networks.

5.3 Structural indices analysis of surface networks

Surface networks are naturally a graph. The regions of higher count rates are of inter-
est in our application. These regions can be represented by peaks and their hills. Since
the regions with very high radiation levels are meaningful, we only considers the top
5 representative peaks. These salient peaks are extracted to form an undirected graph.
For example, in Figure 2b, the top 5 representative peaks are converted into a undi-
rected graph by connecting adjacent peaks in Figure 4a. This graph is also represented
as an adjacency matrix in Figure 4b. These adjacency matrix can be used as the basis
for graph indices and similarity analysis.

(a) Undirected graph

1
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1 2 3 4 5

1

2

3
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5

(b) Adjacency matrix

Figure 4: Undirected graph and its adjacency matrix for the top 5 salient peaks in
Figure 2b.

Surface networks in every month were converted into undirected graphs. These
graphs were analyzed with graph indices and connectedness measurements in Figure
5a.

If you look at the density, most values of density were lower values, which indi-
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(b) Structural similarity

Figure 5: Graph indices and structural similarities

cated a sparsely connected graph. Further, the value of connectedness indicated there
was a isolated node (i.e., a peak and its hill) except January. However, these graph
indices are not related with radiation level changes. In other words, as the mean of ra-
diation levels increase, the graph indices are not correlated. We can just quantitatively
summarize the structure of a graph per month. Thus, the following section compared
the structure similarity of graphs associated with the mean of radiation levels.

5.4 Structural similarity analysis of surface networks

An important alternative to graph indices is a direct comparison of edges sets between
two graphs. The structural correlations between two graphs were calculated for mea-
suring structural similarity.

Results for the structural correlations over time are represented in Figure 5b. For
example, the first bar indicates the structural correlation between January and Febru-
ary, 0.54.

Overall, the structural similarities were fairly correlated except between March and
April. These results are a total contrast to the numeric analysis in Section 5.1. Even
though there is no information about accurate background effects, it is available to
infer how radiation levels have changed using structural similarities of surface net-
works.

6 Discussion

Our numerical analysis of radiation measurements demonstrated that there were sta-
tistically significant differences between each month in terms of radiation levels. How-
ever, it is difficult to understand whether this difference comes from radioactive ma-
terials release or background fluctuations.
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In terms of the feature based parameters analysis, the identified surface networks
well reflected the radiation measurements. The correlation coefficients, r between the
average of absolute height and the mean of radiation measurements was greater 0.7.
This can be regarded as large effect size. Further, this feature based parameter was sig-
nificantly correlated to the radiation measurements (p < 0.05). However, the compu-
tational analysis of the algorithm proposed was not conducted in this research because
this paper focused on the analysis of radiation level changes.

When it comes to structural indices analysis, we can quantitatively summarize the
structure of radiation levels per month. Using structural indices, it can be inferred
whether the regions of higher count rates are highly clustered or separated per month.
However, it is difficult to determine radiation level changes using graph indices.

The last evaluation criteria was the structural similarity analysis. The structural
correlations presented that there were fair correlations for the radiation level changes
over time. This result confirmed that the variations of radiation levels were attributed
to background fluctuations rather than radioactive contamination. However, the struc-
tural similarities were not exactly the same each month. Some parts of salient regions
had been changed per month. This work should be incorporated into research on prin-
cipal component analysis such as precipitation, or wind. In addition, the structural
similarity just provides the correlation coefficient. It is difficult to infer what kinds of
topological events occur between subsequent time steps. Tree morphism and Homol-
ogy algorithm could be exploited to detect qualitative topological events of radiation
level changes.

7 Conclusions

This paper has demonstrated how radiation level changes can be identified using the
structural similarities of surface networks. The structural similarities over time pro-
vide fair correlations for the radiation level changes, even though the numerical anal-
ysis indicates there are statistically significant differences for radiation levels.

The approach presented in this paper has taken a key step in addressing back-
ground effects in radioactive engineering. This research is part of a larger project to
detect the illicit movement of nuclear materials with big data. The structural analysis
can be used efficiently to monitor illicit nuclear materials, irrespective of background
fluctuations.
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Application of a similarity measure for graphs to web-based document struc-
tures. In International Conference on Data Analysis ICA (2005).

[10] EDELSBRUNNER, H., HARER, J., AND ZOMORODIAN, A. Hierarchical Morse
Smale complexes for piecewise linear 2 manifolds. Discrete and Computational
Geometry 30 (2003), 87–107.

[11] HAO, Q., BIANCHI, D., KAESTNER, M., AND REITHMEIER, E. Feature based
characterization of worn surfaces for a sliding test. Tribology International 43, 5
(2010), 1186–1192.

Article submitted for review



14 MYEONG-HUN JEONG, SHAOWEN WANG, CLAIR J. SULLIVAN

[12] HU, Y., MILLER, H. J., AND LI, X. Detecting and analyzing mobility hotspots
using surface networks. Transactions in GIS 18, 6 (2014), 911–935.

[13] JEONG, M.-H., DUCKHAM, M., MILLER, H., KEALY, A., AND PEISKER, A. De-
centralized and coordinate-free computation of critical points and surface net-
works in a discretized scalar field. International Journal of Geographical Information
Science 28, 1 (2014), 1–21.

[14] KAZIUS, J., NIJSSEN, S., KOK, J., BÄCK, T., AND IJZERMAN, A. P. Substructure
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