
Geoinformatica manuscript No.
(will be inserted by the editor)

Decentralized querying of topological relations
between regions monitored by a coordinate-free
geosensor network

Myeong-Hun Jeong � Matt Duckham

Received: date / Accepted: date

Abstract Geosensor networks present unique resource constraints to spatial
computation, including limited battery power, communication constr aints, and
frequently a lack of coordinate positioning systems. As a result, there is a need
for new algorithms that can e�ciently satisfy basic spatial queries within those
resource constraints. This paper explores the design and evaluation of a fam-
ily of new algorithms for determining the topological relations between regions
monitored by such a resource-constrained geosensor network.The algorithms
are based on e�cient, decentralized (in-network) variants of conventional 4-
intersection and intersection and di�erence models, with in-network data ag-
gregation. Further, our algorithms operate without any coordinate informa-
tion, making them suitable applications where a positioning system is unavail-
able or unreliable. While all four algorithms are shown to have overall com-
munication complexity O( n) and optimal load balance O(1), the algorithms
di�er in the level of topological detail they can detect; the types of regions
they can monitor; and in the constant factors for communication complexity.
The paper also demonstrates the impact of �nite granularity observations on
the correctness of the query results. In the conclusions, we identify the need to
conduct further fundamental research on the relationship between topological
relations between regions and limited granularity sensor observations of those
regions.
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1 Introduction

Geosensor networks (wireless network of tiny, untethered computing devices
monitoring phenomena in geographic space [22]) present exciting newpossibil-
ities to a broad range of environmental applications, like habitat monitoring,
carbon accounting, and precision agriculture. However, the inherent resource
constraints in geosensor networks, in particular limited energy resources, de-
mand new approaches to spatial computing that can minimize communication
and even operate without knowledge of nodes' coordinate locations.

The single most important technique for minimizing communication is the
design ofdecentralized algorithms. In a decentralized algorithm, no node has
global knowledge of the state of the entire network; instead eachnode has
local knowledge about its state and that of its immediate neighbors.Decen-
tralized algorithms help to minimize communication by ensuring information
is communicated to neighbors only as required, and aggregated andprocessed
within the network.

In addition to communication constraints, nodes frequently lack access to
information about their coordinate position. Nodes may be located inenvi-
ronments that are unfavorable for positioning systems (e.g., usingGPS in
dense vegetation or underwater environments). Energy constraints may ham-
per positioning (e.g., where positioning systems have high energy budgets or
long time-to-�rst-�x). Or positioning systems may simply be unavaila ble (e.g.,
low-cost, disposable nodes that simply lack sophisticated localizationsensors).
However, in such cases nodes are still expected to have access toone impor-
tant piece of spatial information: neighborhood. Thus, although there is no
information about the location of the sensors, it is possible to deduce topo-
logical relations between regions based on basic point-set topologyconcepts
[4, 8, 9]. The topological aspects have been distinct from the geometric aspects
[1]. The topology (i.e., qualitative geometry [14]) therefore is anotherway of
determining topological relations not based on computational geometry.

Accordingly, this research focuses on e�cient, decentralized, and coordinate-
free algorithms for determining the topological relations between multiple re-
gions monitored by such a resource-constrained geosensor network. The al-
gorithms adapt two conventional models of the topological relations between
regions [4, 8] to the unique constraints of decentralized spatial computing en-
vironments. The algorithms are kept e�cient through the combinat ion of two
complementary decentralized computing strategies: restricting computation to
spatial structures (boundaries) to reduce the number of nodesthat have to take
part in communication; and data aggregation to eliminate the communication
of redundant information. This paper does, however, substantially revise and
extend our previous work presented in a recent short conference article [6].

Following a review of related work (section 2), section 3 precisely speci�es
the construction of four related algorithms in order of increasing sophistication.
Section 4 then presents an experimental evaluation of the overalle�ciency,
load balance, and accuracy of the algorithms, using simulation. Finally, the
paper concludes with a discussion of the limitations of the approach and future
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work, in particular the importance of granularity e�ects in accurat e topological
queries (section 5).

2 Background

2.1 Decentralized spatial computing

The design of decentralized algorithms in wireless sensor networks isa signif-
icant and active research problem. In-network data aggregation, for example,
is one fundamental technique for reducing the number of data transmissions
in decentralized algorithms (e.g., [12, 17, 19, 34, 40]). The algorithmsin this
research also depend partly on data aggregation.

However, in designing decentralizedspatial algorithms, the primary focus
has been on using spatial structures, like boundaries, regions, Voronoi cells,
or planar communication graphs, for structuring communication and com-
putation. For example, [29, 35] use decentralized plane sweeps to e�ciently
coordinate spatial queries, including identifying peaks, pits, and saddle points
in monitored �elds. [31] use Voronoi diagrams to extend existing in-network
aggregation techniques in order to perform spatial averages, weighted by the
size of Voronoi cells for each node. [18] show how energy requirements for spa-
tiotemporal queries can be substantially reduced by using the boundaries of
regions to report for the entire region.

This paper continues the approach of using spatial structures (inour case
region boundaries) to e�ciently compute topological relations between regions.
Speci�cally, this paper is concerned with queries about the topological rela-
tions between two spatial regions, such as \Does region Acover or contain
region B?" The regions in question may be bona �de (such as the presence or
absence of monitored pollutant) or may be �at regions derived fromthresh-
olding continuous �elds (e.g., temperatures above 30� C) [39]. For example,
speci�c applications of these algorithms might include whether regions of high
fuel load and temperature hot-spots overlap in bush�re monitoring; or whether
regions of high nitrogen update are contained within regions of high soil mois-
ture in conservation wetlands creation.

2.2 Topological relations between regions

There are several related models of the topological relations between spatial
regions in arti�cial intelligence and spatial information science. The most well-
known is the 4-intersection model [8], which considers the intersections between
the two regions' (more speci�cally, point sets') topological interiors(� ) and
boundaries(@). For example, topological relations between region A and region
B can be denoted by a four-tuple (@A\ @B, @A\ B � , A � \ @B, A � \ B � ). By
assigning the values empty (�) and non-empty ( : �) for the four intersections,
this model can di�erentiate 24 = 16 binary topological relations. But eight of
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disjoint (0000) meet (1000) overlap (1111)

equal (1001) contains (0011) covers (1011) inside (0101) co veredby (1101)

Fig. 1 The eight topological relations between two regions based o n the 4-intersection
model

these sixteen relations can be realized for two simple regions in the plane as
shown in Fig.1.

Furthermore, [9] adds to the 4-intersection model the two objects' comple-
ments, yielding the 9-intersection model (although the resulting topological re-
lations are identical to the case of connected regions with Jordan boundaries).
An alternative formulation in [4] uses intersection and di�erence between re-
gions to improve the e�ciency of computing these relations.

These approaches assume regions are \simple" (homeomorphic to adisk).
However, other extensions for describing the topological relations between
complex areal objects, such as disconnected regions and regionswith holes,
have also been proposed (e.g., [10, 16]). The TRCR model (topological re-
lations for composite regions) [2] provides a mechanism for describing topo-
logical relations betweencomposite regions (i.e., composed from multiple dis-
connected simple regions) based on the 4-intersection model. The research by
[21] extends the approach further for handling of the compositions of discon-
nected regions and holes. [30] has also introduced de�nitions of general spatial
data types for complex regions based on the 9-intersection modelby using a
proof technique called proof-by-constraint-and-drawing. Based on this model,
33 di�erent topological relations can be identi�ed between two complex re-
gion objects and these topological relations are grouped by generic topological
cluster predicates (i.e., the familiar set of eight topological relations).

However, these models are not appropriate to be adopted directlyin geosen-
sor networks [5]. Speci�cally, from a decentralized perspective, while an indi-
vidual node may be able to determine if the intersection between twopoint
sets is not empty (e.g., a single node that locally senses both regionA and
regionB can locally infer that A \ B 6= ? ), it is never possible for an individual
node to determine if the intersection between two point setsis empty (e.g.,
a single node that does not locally sense both regionsA and B can not infer
that A \ B 6= ? , since there may be some other node in the network that can
sense both regionA and region B ). This observation has direct implications
for designing e�cient decentralized spatial algorithms, when compared with
conventional, centralized alternatives.
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It is worth mentioning a completely di�erent, axiomatic approach tha t
can also be used to describe topological spatial region relations, including dis-
connected regions and regions with holes. Region connection calculus (RCC)
[3, 23] relies on a binaryconnectednessrelation, rather than boundaries, interi-
ors, and complements of point sets. In our work, the point-set based approach
is preferred to RCC, because boundaries, interiors, and complements can be
e�ciently and locally computed in a geosensor network (e.g., [6, 7, 11,39]).
By contrast, connectedness is a primitive in RCC, and practically computing
whether two nodes are \connected" in a sense compatible with RCC (e.g.,
path connected) would be highly ine�cient in a geosensor network.

While computational geometry can be used to determine topologicalrela-
tions, we regard topological relations as set-theoretic constructs. None of these
approaches mentioned above [2, 8, 9, 23] use any geometry at all inde�ning
topological relations, even though they all have well-de�ned boundary and
interior concepts.

Finally, unlike most other recent work on decentralized spatial algorithms
for topological queries (e.g., [7, 11, 15, 27, 39]), this paper does not assume any
knowledge of coordinate positions for nodes. One of our previous works has
begun to address the issue of detecting topologicalchangesto region relations
(e.g., transitioning from meet to overlap) without coordinate inform ation [13].
By contrast, in this paper we are concerned with the complementary ques-
tion of static topological relations between regions (i.e., \snapshot" queries).
Similarly, this research extends the previous work [6] such that thispaper
can generate topological relations between simple and complex regions rang-
ing from the coarse granularity topological relations to the �ne granularity
topological relations at a small computational cost.

3 Algorithms

In this section we present four algorithms, in order of increasing complexity.
The �rst algorithm represents a na•�ve approach, where all nodesat the inter-
section of two regionsA and B are actively involved in the computation. The
second algorithm improves e�ciency by restricting computation only to nodes
at the boundary of the intersection of A and B , but at the cost of reduced
topological relation granularity. The third algorithm goes further a nd involves
the one-hop neighbors of nodes at the boundary of the intersection of A and
B in order to regain the �ne topological granularity at a small computa tional
cost. Finally, the fourth algorithm demonstrates how the approach can be ex-
tended to determine the topological relations between complex areal objects
composed of multiple disconnected parts.

It is worth noting that even though we can use computational geometry to
compute topological relations, set-theoretic constructions aremore fundamen-
tal. This is important in the context of geosensor networks, wherecoordinate
location is either resource intensive to compute, or frequently unavailable.
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Thus, algorithms presented in this paper propose qualitative approach based
on relative neighborhood information to determine topological relationship.

3.1 Algorithm preliminaries

The design and speci�cation of the algorithms presented in this paper follow
the approach of Santoro [28]. Each algorithm begins with a list of restrictions,
specifying the assumptions required for the algorithm to operate.Following
previous work, in this paper we assume as restrictions:

{ a geosensor network, modeled as a connected, undirected graphG = ( V; E).
Our algorithm places no restrictions on whether the graph is planar,al-
though the results of the algorithm may vary depending on the network
structure (cf. [26]). The neighbors of a nodev 2 V are denotednbr(v),
where nbr(v) = f v0jv; v0 2 Eg.

{ each node has sensors capable of determining whether a node detects
a region A and/or B , modeled as a functionsense : V ! P (f A; B g)
(P (f A; B g is the power set off A; B g).

{ communication is reliable, in the sense that all messages sent will be deliv-
ered without corruption in a �nite amount of time. We make no assump-
tions about the communication latency or the order in which messages are
received (e.g., individual messages may be delayed or even \overtake" other
messages).

The neighborhood of each node (i.e.,nbr(v)) is simply those nodes with
which it can engage in direct (one-hop) communication. Thus, it is guaranteed
that each node knows its neighbors because they must be within communi-
cation range, in which case the reliable communication assumption ensures
that node will hear messages from them. Accordingly, nodes must already
know which neighbors are in their immediate (one-hop communication)vicin-
ity. This is a standard assumption in distributed systems [28].

After the restrictions, each algorithm speci�es a set of states for nodes
(written in small capital letters); the allowable transitions between states (to-
gether forming a state transition system); and the initial states for nodes. In
this paper, all the algorithms are initialized with all nodes in state idle , except
one designated sink node initialized in thesink state. The sink node is respon-
sible for initiating the query and collating the partially processed responses
from targeted nodes in the network. Although we use a single sink node in our
algorithm, the algorithm might easily be extended to operate with multiple
or zero sink nodes (in the latter case retaining information in the network for
use in subsequent, more sohisticated algorithms).

Following [28], each node has capabilities including access to local mem-
ory, local processing, and communication. Local memory includes the initially
de�ned states (see above). It may also containlocal variables: data structures
that each node may use to store information created during algorithm execu-
tion (listed as the last item in the algorithm header).
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Fig. 2 Boundary and interior nodes in a sensed region (Black nodes a re boundary nodes
and white nodes with black thick stroke are interior nodes)

In each state, a node can only respond to system events (writtenin ital-
ics). Just two types of events are required in this paper1: receiving a message
(Receiving keyword) or spontaneous events (Spontaneouslykeyword, typically
used to start an algorithm). When an event occurs, a node will react by exe-
cuting an indivisible and terminating sequence of operations called anaction.
Actions are executed without interruption (i.e., no other events can a�ect an
action) and must end within a �nite amount of time. For each state and event
there must be exactly one action, State� Event ! Action; state, event pairs
with no speci�ed actions are de�ned to be associated with the emptyaction.

Inside each action, it is important to be able to distinguish each individual
node's local knowledge from the state of the network (i.e., a given nodev
will have access to its own sensed datasense(v), but not to that of any other
node sense(v0) unless it has previously been explicitly communicated to and
locally stored at v). To enforce and highlight the local knowledge of a node,
the over-dot notation �sense(termed \local" or \my" sense) is used to refer
to the current node's knowledge of that function (i.e., for an arbitrary node
� 2 V clear from the context, �senseis equivalent to sense(� )).

Given this information, each node can determine whether they are bound-
ary nodes or interior nodes in a sensed region based on short-range, peer to
peer communication. Fig.2 illustrates how to determine the boundaryof the
region in a geosensor network. Boundary nodes that can sense they are inside
a sensed region and have a one-hop neighbor outside the region. Similarly, in-
terior nodes are inside a sensed region, but only can communicate with nodes
in a sensed region. Apparently, the boundary de�ned by geosensor networks
will be necessarily at a coarser granularity than the phenomenon itself. How-
ever, this will be the case for any geographic information, which must also
necessarily be at a limited level of granularity (in indeed the granularity limi-
tations may actually be lessened by geosensor networks, where typically nodes
are spatially densely distributed).

1 [28] de�ne a third system event type: an alarm/trigger event .
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0010

0100

1000

0001

Fig. 3 Four inferred bit combinations at the intersection of two re gions, A and B . 1000 is
in @A\ @B; 0100 is in @A\ B � ; 0010 is in A � \ @B; 0001 is in A � \ B �

Using this idea, it is possible to adopt the 4-intersection model in order
to systematically determine topological relations between regions monitored
by a geosensor network. Later sections will introduce some more sophisticated
algorithms with simpli�ed �gures.

3.2 Basic algorithm

Algorithm 1 (basic) is a direct, decentralized analog of the well-known4-
intersection model [8]. Starting with the sink node, the network is 
ooded
with a ping message, as the basis for constructing a routing tree (with each
node storing its immediate parent in the tree, �parent). This step requires in
total jV j messages, leading to �(n) overall communication complexity (ping
messages sent), with optimal �(1) load balance (number of messages per node).
The payload of eachping message includes a node's sensed value (in or out of
region A and/or B ). Using this information about its neighbors, a node can
deduce the following (see Fig. 3):

{ A node that sensesA and B ( �sense= f A; B g) and has at least one one-hop
neighbor that senses bothA and B , is at the boundary of A and B , i.e.,
@A\ @B6= ? (see Algorithm 1, line 17);

{ A node that sensesA and B and has at least one one-hop neighbor that
sensesB only, is also at the boundary ofA, i.e., @A\ B � 6= ? (see Algorithm
1, line 18);

{ A node that sensesA and B and has at least one one-hop neighbor that
sensesA only, is also at the boundary ofB , i.e., A � \ @B6= ? (see Algorithm
1, line 19); and

{ A node that sensesA and B , and has only neighbors that also senseA and
B is in the interior of A and B , i.e., A � \ B � 6= ? (see Algorithm 1, line
21).

Each node stores the non-empty intersections it can deduce (Fig.3) as a
four-bit number, using the function bnum : V ! B4 (see Algorithm 1, line 4).
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In turn, each non-zero bit signi�es a node has deduced:@A\ @B, @A\ B � ,
A � \ @B, A � \ B � , respectively (e.g., see Fig. 3).

Algorithm 1 Decentralized 4-intersection algorithm for querying topological
relations between regionsA and B (basic)

1: Restrictions: reliable communication; connected, undi rected graph G = ( V; E ); nbr :
V ! P (V ) where nbr(v) 7! f v0jf v; v0g 2 E g; sense: V ! P (f A; B g)

2: State Trans. Sys.: hfsink ; init ; idle ; done g; f (init ; sink ); (idle ; done )gi
3: Initialization: All nodes in state idle , except one node in init
4: Local variables: bnum : V ! B4 , initialized �bnum := 0000; parent : V ! V [ f ? g,

initialized �parent := ? ; visited neighbors N , initialized N := ?

init
5: Spontaneously
6: broadcast (ping , �sense) // Sink initiates algorithm
7: become sink

sink
8: Receiving (rprt , b)
9: set �bnum := b_ �bnum

10: Deduce topological relations between A and B from �bnum according to Table 1

idle
11: Receiving (ping , x) from v
12: N := N [ f vg // Update list of visited nodes
13: if �parent = ? then // Check for �rst ping received
14: set �parent := v // Store tree parent
15: broadcast (ping , �sense) // Continue building tree
16: if �sense= f A; B g then
17: if x = ? then set �bnum := �bnum _ 1000 // @A\ @B6= ?
18: if x = f B g then set �bnum := �bnum _ 0100 // @A\ B � 6= ?
19: if x = f Ag then set �bnum := �bnum _ 0010 // A � \ @B6= ?
20: if N = �nbr then // Check if tree received from all neighbors
21: if �bnum 6= 0000 and �sense= f A; B g then set �bnum := 0001// Check for A � \ B �

22: if �bnum 6= 0000 then send (rprt , �bnum) to �parent // Initiate message to sink
23: become done

done , idle
24: Receiving (rprt , b)
25: if b_ �bnum 6= �bnum then // Check for new data
26: set �bnum := b_ �bnum // Data aggregation
27: send (rprt , �bnum) to �parent // Forward aggregate data

When an idle node has receivedping messages from all its neighbors, it
transitions to a done state. If that node's inferred �bnum 6= 0000 (i.e., if the
node is somewhere at the intersection betweenA and B ) it will forward a rprt
message to the sink node (see Algorithm 1, lines 20{23). Nodes receiving a rprt
message compare their existing knowledge with the received information using
a logical, bitwise disjunction operator (see Algorithm 1, lines 25{27).Data ag-
gregation is used to ensure only new information, not previously known to the
node, is forwarded further towards the sink. This process of data aggregation
is shown in Fig. 4. The bold dark edges are in the rooted tree, established
using ping messages to return information to the sink node. In Fig. 4 step 1,
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0001
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0100

1110

SINK

0000

1010

0010

1111

0001

1110

0100

1110

SINK

Step 1 Step 2

1010
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1110

1111

0001

1110

0100

1110

SINK

1111

1111

1110

1111

0001

1110

0100

1110

SINK

Step 3 Step 4

Fig. 4 Data aggregation process (steps 1{4)

Table 1 Determining the topological relation between regions (see basic algorithm 1, line 10
and Algorithm 3, line 10), for bnum(v) 2 B4 of sink node v 2 V . 1000 indicates @A\ @B6= ? ;
0100 indicates @A\ B � 6= ? ; 0010 indicates A � \ @B6= ? ; and 0001 indicates A � \ B � 6= ?

bnum(s) for sink node s 2 V Topological relation

0000 A, B disjoint
1000, 1100, 1110, 0110, 1010 A, B meet
1111, 0111 A, B overlap
1001, 1000 A, B equal
0011, 0010 A contains B
1011, 1010 A covers B
0101, 0100 A inside B
1101, 1100 A coveredby B

every node senses their own value and then updates their bit sequence. After
receiving messages from all one-hop neighbors, every node with any non-zero
bits forwards an rprt message to its parent node in the routing tree (Fig. 4
step 2). Before forwarding anrprt message, nodes compare their bit sequence
with previously received information, and only forward new, previously unseen
information to the sink node in Fig. 4, steps 3{4. Because of this data aggrega-
tion, each node may transmit at most four rprt messages, leading again to an
overall worst case communication complexity of O(n) and load balance O(1).
However, in practice, only a small proportion of nodes are expected to lie at
the intersection of A and B (if any), meaning the average case communication
complexity for rprt messages may be much better.

In the �nal step, the sink node can deduce the topological relationbetween
the two regions using the bitwise disjunction of all received messages (Algo-
rithm 1, line 10 and Table 1). Because of the limited spatial granularity of the
sensor network, the table isnot the same as the familiar 4-intersection model,
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01110011

0011

0111

0101

1100

0110

1010

1110

a. Overlap b. Meet

Fig. 5 Example bit combinations that do not directly correspond to the 4-intersection
model: a. overlap relation and b. meet relation

but includes the full 16 possible bit combinations. For example, overlap is not
simply 1111, but also 0111, because for two overlapping regions it is possible
that no node in the neighborhood of a node that senses bothA and B hap-
pens to senseneither A nor B (i.e., all neighbors of nodes that senseA and
B , sense eitherA, B , or A and B ). Fig. 5a illustrates an example of such an
overlap con�guration. Another example of granularity e�ects is th e meet rela-
tion, where bit sequences includes 1100, 1110, 0110, and 1010 in addition to
the expected 1000. Again, because of limited spatial granularity, anode that
is at the boundary of A and B , may detect the boundary of A, the boundary
of B , and the combined boundary ofA and B through separate interactions
with neighbors (see Fig. 5b).

Further, not all bit combinations specify a unique topological relation.
Speci�cally, 1000 may indicate meet or equal; 1010 may indicate meetor
cover; and 1100 may indicate meetor covered by. Fig. 6 illustrates these
degenerate cases. Lastly, one of the sixteen topological spatialrelations, 0001
(omitted from Table 1), can only occur where the boundaries of both regions
are beyond the spatial extents of the network (as shown in Fig. 7).

3.3 Three-bit coarse resolution topological relation model betweensimple
regions (3bit)

Algorithm 1 illustrates a number of issues that arise when decentralizing the
4-intersection model, and more importantly the confounding e�ects of the lim-
ited spatial granularity of a geosensor network. In particular, those relations
that involve boundary conditions (meet, covers, and covered by)are in some
senses not well-de�ned in that boundaries in a sensor network cannot be di-
rectly sensed; instead they must be inferred from pairs of neighbor nodes that
straddle the boundary. Consequently, the granularity of the network places
limitations on the level of detail that can be provided about the boundary
location. However, limited granularity is a feature of any spatial data cap-
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1000

1000

1000

1000 1000

1000

1000

1010

1010

1010

1100

1100
1100

a. b. c.

Fig. 6 Limited granularity and topological relation uniqueness: a. 1000 could be classi�ed
as meet or equal; b. 1010 could be classi�ed as meet or cover; a nd c. 1100 could be classi�ed
as meet or covered by.

Fig. 7 The spatial extent of the network is smaller than the boundar ies of both regions.

ture technology, and indeed a geosensor network might even expect to be at
�ner granularity than more traditional spatial data capture meth ods. Thus an
alternative to address this issue is to move to a coarser level of topological
granularity, instead distinguishing between just �ve (rather than the conven-
tional 8) topological relations: disjoint, overlap, contains, inside, and equals.

Monitoring these coarser-grained topological relations can be achieved us-
ing just three bits (i.e., @A\ @B6= ? , @A\ B � 6= ? , A � \ @B6= ? ) and
involving only those nodes at the boundary of the intersection betweenA and
B (see Fig. 8). Algorithm 2 (3bit) is a direct adaptation of Algorithm 1 us ing
only these three-bit sequences. Crucially, the algorithm is expected to be com-
putationally more e�cient, requiring at most three rprt messages per node.
Further, since rprt messages are only initiated at theboundary of the intersec-
tion between A and B (rather than over the entirety intersection of A and B ),
the overall number of rprt messages sent is expected to scale in proportion
to jV j

D
2 , where D 2 [1; 2) is the fractal dimension of the region [7]. Estimates

of fractal dimension for geographic shapes vary widely. For example, fractal
dimensions of regions representing urban growth are typically in theinterval
D 2 [1:2; 1:7] [32]; other features like river networks have higher estimated
fractal dimensions, D 2 [1:4; 1:9] [25, 36]. However, irrespective of the precise
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100
100

100

100
100

a. A , B disjoint (000) b. A , B overlap (111 or 011) c. A , B equal (100)

010

010

110

010

101
001

d. A inside B (010 or 110) e. A contains B (001 or 101)

Fig. 8 Three-bit coarse resolution topological relations betwee n two spatial regions

value of D , involving only nodes at the boundary of regions in initiating rprt
messages reduces the overall communication complexity for thesemessages to
O(nk ) where 0:5 � k < 1. The reason behind this is that a fractal dimension
is an index characterizing geometric forms of spatial objects (e.g.,irregularity,
scale-independence, and self-similarity) [32]. If spatial objects have Euclidean
geometric regularity, the fractal dimension equals topological dimension. For
example, if D equals 0, 1 or 2, it describes points, lines or surfaces respectively.
Thus, a fractal dimension can be explained as a set which exceeds the topo-
logical dimension [20]. Accordingly, the fractal dimension of the boundary of
the region component isD 2 [1; 2) [7].

3.4 Four-bit �ne-grained topological relation between simple regions

Algorithm 3 (4bit) again returns to �ne-granularity topological rela tions and
a four-bit representation. However, building on the idea introduced in the pre-
vious section (that average-case e�ciency can be improved by onlyinvolving
nodes at theboundary of the intersection betweenA and B in the generation
of rprt messages) Algorithm 3 uses a node's knowledge of its neighboring
nodes to ensure only boundary nodes and any of their one-hop neighbors in
the interior of the intersection of A and B sendrprt messages to the sink. The
intuition here is that nodes that are both in the interior of the inters ection
betweenA and B and have no neighbors at the boundary of the intersection of
A and B hold only redundant information about the topological relation be-
tween the region (and so need never initiate anrprt message unlike Algorithm
1). Thus, Algorithm 3 is able to achieve the same �ne-granularity topological
detail as Algorithm 1, but with only nodes at most one-hop from the bound-
ary of the intersection of A and B responding, again ensuring the number of
rprt messages should be proportional tojV j

D
2 , and so overall communication

complexity of rprt messages O(nk ), 0:5 � k < 1.
Algorithm 3 can be summarized by highlighting the following features:
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Algorithm 2 Querying coarse resolution topological relations between regions
A and B (3bit)

1: Restrictions: reliable communication; connected, undi rected graph G = ( V; E ); nbr :
V ! P (V ) where nbr(v) 7! f v0jf v; v0g 2 E g; sense: V ! P (f A; B g)

2: State Trans. Sys.: hfsink ; init ; idle ; bndy ; done g; f (init ; sink ); (idle ; bndy ); (idle ; done );
(bndy ; done )gi

3: Initialization: All nodes in state idle , except one node in init
4: Local variables: bnum : V ! B3 , initialized �bnum := 000; parent : V ! V [ f ? g,

initialized �parent := ? ; visited neighbors N , initialized N := ?

init
5: Spontaneously
6: broadcast (ping , �sense) // Sink initiates algorithm
7: become sink

sink
8: Receiving (rprt , b)
9: set �bnum := b_ �bnum

10: Deduce topological relation between A and B from �bnum according to Fig. 8

idle
11: Receiving (ping , x) from v
12: N := N [ f vg // Update list of visited nodes
13: if �parent = ? then // Check for �rst ping received
14: set �parent := v // Store tree parent
15: broadcast (ping , �sense) // Continue building tree
16: if x 6= �sense and �sense= f A; B g then
17: if x = ? then set �bnum := �bnum _ 100 // @A\ @B6= ?
18: if x = f B g then set �bnum := �bnum _ 010 // @A\ B � 6= ?
19: if x = f Ag then set �bnum := �bnum _ 001 // A � \ @B6= ?
20: if N = �nbr then // Check if tree received from all neighbors
21: if �bnum 6= 000 then
22: become bndy
23: else
24: become done

bndy
25: Spontaneously
26: send (rprt , �bnum) to �parent // Initiate message to sink
27: become done

done , idle
28: Receiving (rprt , b)
29: if b_ �bnum 6= �bnum then // Check for new data
30: set �bnum := b_ �bnum // Data aggregation
31: send (rprt , �bnum) to �parent // Forward aggregate data

{ The single init sink node begins the algorithm as normal by broadcasting
a ping message before transitioning to statesink .

{ ping messages are 
ooded throughout the network, enabling nodes toiden-
tify their parents in the routing tree, and determine whether they are at
the boundary of A \ B (and so required to initiate a rprt message).

{ Additionally, each node includes in its ping message its current knowledge
of its bit sequence, �bnum. In cases where the sink isoutside A \ B , this
information enables nodes inA � \ B � to determine if they are also one-
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Algorithm 3 Four-bit �ne resolution topological relations between regionsA
and B (4bit)

1: Restrictions: reliable communication; connected, undi rected graph G = ( V; E ); nbr :
V ! P (V ) where nbr(v) 7! f v0jf v; v0g 2 E g; sense: V ! P (f A; B g)

2: State Trans. Sys.: hfsink ; init ; idle ; bndy ; done g; f (init ; sink ); (idle ; bndy ); (idle ; done )gi
3: Initialization: All nodes in state idle , except one node in init
4: Local variables: bnum : V ! B4 , initialized �bnum := 0000; �nBnum : V ! B4 , initialized

�nBnum := 0000; parent : V ! V [ f ? g, initialized �parent := ? ; visited neighbors N ,
initialized N := ?

init
5: Spontaneously
6: broadcast (ping , �sense, �bnum) // Sink initiates algorithm
7: become sink

sink
8: Receiving (rprt , b)
9: set �bnum := b_ �bnum

10: Deduce topological relation between A and B from �bnum according to Table 1

idle
11: Receiving (ping , x, nb) from v
12: N := N [ f vg // Update list of visited nodes
13: �nBnum := �nBnum _ nb // Update neighbor's bnum
14: if x 6= �sense and �sense= f A; B g then
15: if x = ? then set �bnum := �bnum _ 1000 // @A\ @B6= ?
16: if x = f B g then set �bnum := �bnum _ 0100 // @A\ B � 6= ?
17: if x = f Ag then set �bnum := �bnum _ 0010 // A � \ @B6= ?
18: if �parent = ? then // Check for �rst ping received
19: set �parent := v // Store tree parent
20: broadcast (ping , �sense, �bnum) // Continue building tree
21: if N = �nbr then // Check if tree received from all neighbors
22: if �sense= f A; B g then
23: if �bnum = 0000 then // A � \ B � 6= ?
24: if �nBnum 6= 0000 then // One of this node's neighbor is boundary node
25: set �bnum := �bnum _ 0001
26: send (rprt , �bnum) to �parent // Initiate message to sink
27: else
28: set �bnum := �bnum _ 0001 // Update local bit number
29: if �bnum 6= 0000 or �bnum 6= 0001 then
30: become bndy
31: else
32: become done

bndy
33: Spontaneously
34: send (rprt , �bnum) to �parent // Initiate message to sink
35: become done

done , idle
36: Receiving (rprt , b)
37: if b_ �bnum 6= �bnum then // Check for new data
38: set �bnum := b_ �bnum // Data aggregation
39: send (rprt , �bnum) to �parent // Forward aggregate data
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hop neighbors of the boundary ofA \ B . In Algorithm 3 these nodes also
initiate rprt messages (see Algorithm 3 line 26).

{ In cases where the sink isinside A \ B , the returning rprt messages must
be forwarded in any case by nodes inA � \ B � that are one-hop neighbors
of nodes at the boundary ofA \ B . Accordingly, these nodes are able to
add their knowledge to the rprt message (see Algorithm 3 line 28).

{ As before, nodes receiving arprt check that the message contains new,
unseen information before forwarding further (Algorithm 3, lines 37{39).

{ In the �nal step, the sink node deduces topological relations againbased
on Table 1.

3.5 Intersection and di�erence model for complex regions (ID)

All the algorithms already discussed deal only with simple regions homeomor-
phic to a disk. While this is an important starting point, it is obviously not
su�cient to model the variety and complexity of geographic regions (i.e., com-
plex areal objects with multiple disconnected components and holes). Several
models of topological relations between complex areal objects have already
been discussed in section 2. However, as for simple regions, none ofthese
models can be directly applied in a decentralized spatial algorithm because of
the inherent constraints to communication in a geosensor network.

Of the alternatives, the most appropriate for adaptation to a decentral-
ized spatial computing environment is the intersection and di�erence model
[4]. In contrast to the 4-intersection model (@A\ @B= ? , @A\ B � = ? ,
A � \ @B= ? , A � \ B � = ? ), the four conditions tested in the intersection and
di�erence model are:@A\ @B= ? , A � B = ? , B � A = ? , A � \ B � = ? . Table
2 summarizes the extensions made to the intersection and di�erence model,
distinguishing the eight four-bit sequences taken directly from themodel, from
the seven four-bit sequences added to the model in order to account for the
�nite-granularity characteristics of a geosensor network. For instance, if two
regions are empty, the description of disjoint could include 0000 (not consid-
ered in the intersection and di�erence model). If two regions have no interiors,
the equals relation can include the 1000 bit sequence. Similarly, coarse spatial
granularity can lead to a lack of region interiors for the bit-sequences 1100
(cover), 1010 (covered by), 0100 (contain), and 0010 (inside).Finally, 0111 is
classed as overlap, but where no single node inA \ B is a one-hop neighbor
of a node outside bothA and B (due to limited granularity, as already seen
in Fig 5a). The only remaining bit sequence, 0001, is not possible (i.e., non-
empty interior intersection, but empty boundary intersections, and empty set
di�erences A � B and B � A cannot occur).

With these adaptations, this extended model can determine the topological
relations between complex areal objects with disconnected parts. For example,
in Fig. 9 the sink node will infer an overall bit sequence of 0101_ 0010 = 0111,
corresponding to an overlap relation (Table 2). By contrast, using the ex-
tended 4-intersection model in Algorithm 3 would result in incorrectly infer-
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Table 2 Determining the topological relation between complex regi ons using the intersec-
tion and di�erence model (Algorithm 4). Four-bit numbers re present h@A\ @B6= ? ; A � B 6=
? ; B � A 6= ? ; A � \ B � 6= ? i . Bit sequences in bold font indicate additions to the inters ec-
tion and di�erence model of [4] to account for limited granul arity of geosensor network. Bit
sequences not tested in our simulations are indicated using y.

bnum(v) for sink node v 2 V Topological relation

0110, 0000 y A, B disjoint
1110 A, B meet
1111, 0111 A, B overlap
1001, 1000 A, B equal
0101, 0100 A contains B
0011, 0010 A inside B
1101, 1100 A covers B
1011, 1010 A covered by B

0101

0101
0010

0010

Fig. 9 An overlap relation based on the intersection and di�erence model between two
regions, one with disconnected parts

ring the inside relation between regions, e�ectively ignoring the disconnected
component. The resulting eight topological relations correspond directly to
the coarse-granularity grouping presented in [30] of the full 33 topologically
distinct relations between complex areal objects. Finally, Algorithm 4 provides
the decentralized spatial algorithm corresponding to the bit sequences in Ta-
ble 2. The algorithm itself adopts the same basic structure and techniques as
already encountered in Algorithm 3.

3.6 Summary

All four algorithms are expected to have overall computational complexity
O(n), and load balance O(1), since in all cases every node can send at most
�ve messages: oneping message, and up to fourrprt messages (and only three
in the case of Algorithm 2).

While every node is required to broadcast aping message, arguably the
cost of this operation can be amortized by the cost of network initialization.
In establishing an ad hoc network, nodes would in any event be required
to broadcast a \hello" message to initiate communication. The information
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Algorithm 4 Computing topological relations between complex areal objects
A and B , based on the intersection and di�erence model (ID)

1: Restrictions: reliable communication; connected, undi rected graph G = ( V; E ); nbr :
V ! P (V ) where nbr(v) 7! f v0jf v; v0g 2 E g; sense: V ! P (f A; B g)

2: State Trans. Sys.: hfsink ; init ; idle ; bndy ; done g; f (init ; sink ); (idle ; bndy ); (idle ; done )gi
3: Initialization: All nodes in state idle , except one node in init
4: Local variables: bnum : V ! B4 , initialized �bnum := 0000; �nBnum : V ! B4 , initialized

�nBnum := 0000; parent : V ! V [ f ? g, initialized �parent := ? ; visited neighbors N,
initialized N := ? ;

init
5: Spontaneously
6: broadcast (ping , �sense, �bnum) // Sink initiates algorithm
7: become sink

sink
8: Receiving (rprt , b)
9: set �bnum := b_ �bnum

10: Deduce topological relation between A and B from �bnum according to Table 2

idle
11: Receiving (ping , x) from v
12: N := N [ f vg // Update list of visited nodes
13: if x 6= �sense and �sense= f Ag then
14: if x = f B g then set �bnum := �bnum _ 0100 // Node at boundary A � B
15: if x = ? then set �bnum := �bnum _ 0100 // Node at boundary A � B
16: if x 6= �sense and �sense= f B g then
17: if x = f Ag then set �bnum := �bnum _ 0010 // Node at boundary B � A
18: if x = ? then set �bnum := �bnum _ 0010 // Node at boundary B � A
19: if x 6= �sense and �sense= f A; B g then
20: if x = f B g then set �bnum := �bnum _ 0010 // B � A 6= ?
21: if x = f Ag then set �bnum := �bnum _ 0100 // A � B 6= ?
22: if x = ? then set �bnum := �bnum _ 1000 // @A\ @B6= ?
23: if �parent = ? then // Check for �rst ping received
24: set �parent := v // Store tree parent
25: broadcast (ping , �sense, �bnum) // Continue building tree
26: if N = �nbr then // Check if tree received from all neighbors
27: if �sense= f A; B g then
28: if �bnum = 0000 then // A � \ B � 6= ?
29: if �nBnum 6= 0000 then // One of this node's neighbor is boundary node
30: set �bnum := �bnum _ 0001
31: send (rprt , �bnum) to �parent // Initiate message to sink
32: else
33: set �bnum := �bnum _ 0001 // Update local bit number
34: if �bnum = 0110 then set �bnum := �bnum _ 1000 // @A\ @B6= ?
35: if �bnum 6= 0000 or �bnum 6= 0001 then
36: become bndy
37: else
38: become done

bndy
39: Spontaneously
40: send (rprt , �bnum) to �parent // Initiate message to sink
41: become done

done , idle
42: Receiving (rprt , b)
43: if b_ �bnum 6= �bnum then // Check for new data
44: set �bnum := b_ �bnum // Data aggregation
45: send (rprt , �bnum) to �parent // Forward aggregate data
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contained in the ping message could easily be included in this required network
initialization step.

Following this reasoning, the number of rprt messages could be propor-
tional to jV j in the worst case for Algorithm 1. However, Algorithms 2{4
require only nodes at theboundary of the intersection of regionsA and B to
initiate rprt messages (or their one-hop neighbors in the cases of Algorithms
3 and 4). As a result, substantially fewer nodes are expected to participate in
these messages, and the overall communication complexity ofrprt messages
for those algorithms is expected to be O(nk ), 0:5 � k < 1.

These expectations are evaluated experimentally in the following section.

4 Experiments

The performance of the four algorithms was evaluated and compared with re-
spect to three criteria: the overall communication complexity, the load balance,
and the accuracy of the responses generated by the algorithms.

4.1 Experimental setup

The algorithms mentioned in the previous section were implemented within
the agent-based simulation system, NetLogo [37]. NetLogo is particularly well-
adapted to these types of experiments for two reasons: it enables algorithms
to be implemented using code that is extremely close to the formal speci�ca-
tion, reducing impedance mismatch; and it allows the simulation of boththe
geosensor network and the geographic environment being monitored, a feature
absent from many purpose-built sensor network simulation systems.

For each simulation run, a geosensor network with randomized nodeloca-
tions was generated. The network was connected by the unit distance graph
(UDG). The UDG models the physical network structure, where nodes closer
than some communication distancec can engage in direct one-hop communica-
tion. In order to ensure comparability across simulations, the levelof network
connectivity was kept constant regardless of the network size. In practice, this
means that as the number of nodes in the simulation area is doubled (increas-
ing node density), the communication distancec is reduced by a factor of

p
2

accordingly.
Further, a randomly generated pair of regions was grown using a ran-

domized variant of a dilation operation from image processing. The dilation
procedure was constrained to ensure that the experimenter cancontrol the
topological relation of the regions generated. Thus, the spatial extent of a
geosensor network can cover the whole boundaries of generatedregions. This
can guarantee that all regions will be monitored. Furthermore, a boundary
must necessarily lie somewhere in-between a node that detects a region, and a
neighbor that lies outside a region (as shown in Fig. 2). This has now become
one of the standard de�nitions of boundary used across research into geosensor
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(a) (b) 

Fig. 10 Example of randomly generated overlapping regions monitor ed by randomly gen-
erated network: a. simple regions; b. complex areal object ( in color blue indicates region
A � B , yellow indicates region B � A , and green indicates A \ B .

Table 3 Results of power regression analysis (y = axb) for responsive curves in Fig.11

Algorithms Factor a Power b R2

Basic (1) 0.2871 0.9176 0.98388
3bit (2) 0.642 0.7443 0.96933
4bit (3) 0.6767 0.7602 0.95696

ID (4) 1.7501 0.7283 0.96553

networks [7, 13, 18, 33]. Fig. 10 shows two examples of randomly generated
regions that overlap (simple region in Fig. 10a and complex areal object with
a disconnected part in Fig. 10b) as well as the UDG connecting nodes.

4.2 Overall scalability

A series of experiments to investigate overall scalability was conducted across
seven di�erent network sizes (250, 500, 1000, 2000, 4000, 8000, and 16,000
nodes), for each of the 8 topological relations and four di�erent algorithms,
with 10 randomized replications at each level (total 7� 8 � 4 � 10 = 2240
simulation runs). For each run the overall number of ping and rprt messages
generated was measured.

As expected, theping messages generate exactlyjV j messages in all cases.
However, as already argued,ping messages could be regarded as part of the
required ad hoc network initialization costs. Consequently, the more salient
feature of the algorithm from the perspective of e�ciency is the rprt messages
generated.

Fig. 11 shows the total number ofrprt messages generated for the overlap
relation only, for each algorithm and averaged over 10 randomized simulations.
The results of a regression analysis on the same data is shown in Table3.
All the regression curves achieved relatively good �t, indicated byR2 values
ranging from 0.95 to 0.98.
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Fig. 11 Overall scalability for rprt messages for the overlap relation

The results can be interpreted to indicate that Algorithms 2 showedcompa-
rable performance to Algorithm 3, with Algorithm 4 arguably approxim ately
the same order (O(n0:73)) but larger constant factor (1.75 as compared with
approx 0.6). Despite a substantially lower factor (� 0.3) Algorithm 1 arguably
has the worst scalability given its substantially higher order (O(n0:92)). This
broadly agrees with our expectation, where Algorithm 2 generatesonly mes-
sages at the boundary of the intersection ofA and B , and at most three
rprt messages for any node; Algorithm 3 adds up to fourrprt messages for
any node, andrprt messages from one-hop neighbors of the boundary of the
intersection of A and B ; Algorithm 4 further generates messages from the
boundaries of A and B ; and Algorithm 1 generates messages from both the
boundary and interior of the intersection of A and B .

Further investigations investigated if the results for the di�erent algorithms
were signi�cantly di�erent, or if di�erences might have arisen by cha nce. Ac-
cordingly, the following hypotheses were formulated for all pairs ofalgorithms
x and y:

H0: � x � � y = 0 for all network sizes
H1: � x � � y 6= 0 for some network sizes
H2: � x � � y 6= 0 for all network sizes

Using a t-test for the di�erence between two means (i.e. the means of the
samples for each pair of algorithms� x and � y ), the null hypothesis H0 was
rejected in all cases at the 1% level. Further, the hypothesisH1 was rejected
in favor of the stronger H2 at the 5% level when comparing Algorithms 1 and
3, 2 and 3, and 2 and 4. The majority of these exceptions relate to the smaller
granularities (where the total number of messages generated is inany event
smaller). But the general pattern is clear: there is strong evidence that the
Algorithms do give rise to signi�cantly di�erent scalability.
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Fig. 12 Overall scalability of rprt message for equals relation

Table 4 Resutls of power regression analysis (y = axb) for responsive curves in Fig.12

Algorithms Factor a Power b R2

Basic (1) 0.3905 0.9647 0.99585
3bit (2) 0.9395 0.7343 0.98684
4bit (3) 1.4329 0.705 0.97691

ID (4) 1.175 0.7359 0.97785

The other seven topological relations all follow similar patterns, with the
exception of the disjoint relation (which generates norprt messages in Algo-
rithms 1, 2, and 3). The main di�erences variability across topological relations
can be attributed to di�erences in the size of the intersection betweenA and
B . For example, assuming constant region sizes, the size of the intersection
betweenA and B must be larger for the equals relation than for the overlap
relation. To illustrate, Fig. 12 and Table 4 show the results of the same ex-
periments for the equals relation. In this case, the null hypothesisH0 was not
rejected for Algorithm 3 and Algorithm 4 at the 1% level, indicating no signif-
icant di�erence between the performance of these algorithms forthis speci�c
topological relation.

4.3 Load balance

Load balance is a vital characteristic of any decentralized algorithm, arguably
more so than overall communication complexity. Uneven load balancewill
consume energy more rapidly at some nodes. In practice, that canmean some
nodes deplete their energy resource and die more rapidly, potentially leading
to holes in network coverage and even disconnected networks.
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Fig. 13 Load balance for rprt message for overlap relations (averag ed over 10 networks of
4000 nodes)

In addition to overall messages sent, the experiments described above also
recorded the number of messages sent on a per-node basis. The load his-
togram in Fig. 13 shows for the overlap relation the number ofrprt messages
transmitted by individual nodes (averaged over the 10 repetitions) against
the frequency of nodes transmitting that number of messages. As expected,
all algorithms transmitted at most four rprt messages (or three in the case
of Algorithm 2). Furthermore, the basic algorithm (Algorithm 1) exh ibits a
substantially larger number of nodes with the largest loads (four messages).
Again, comparable results were obtained for all the topological relations.

4.4 Veracity of algorithms

In addition to scalability, the experimental investigation evaluated t he veracity
of the algorithms, in terms of the accuracy of the detected topological relation.
For example, Table 5 shows the misclassi�cation for 100 simulation runs of
Algorithm 2 with �rst 500 nodes and then 4000 nodes. The rows of Table 5
correspond to the actual topological relation, whereas columns correspond to
the detected topological relation. Because Algorithm 2 only detects �ve (coarse
granularity) topological relations, the matrix has only �ve columns, but 8
all possible topological relations were tested (i.e., both meet and overlap at
�ne topological granularity are detected as overlap at coarse granularity; both
contains and covers at �ne granularity map to contains at coarse granularity;
and inside and covered by both map to inside).

Results for both 500 and 4000 nodes are given together in Table 5. For
example, an entry of \91/100" in the M/O cell indicates that 91 out o f 100
experimental con�gurations that were meet were correctly detected as overlap
with a network of 500 nodes, whereas all 100 were correctly detected as overlap
with a network of 4000 nodes. All the algorithms tested exhibited similar
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Table 5 Misclassi�cation matrix (rows are actual relation, column s detected relation) re-
sulting from Algorithm 2. Figures are quoted for network siz es of 500 nodes/4000 nodes.
Note: D=disjoint; M=meet; O=overlap; C=contains; I=insid e; V=covers; B=covered by;
E=equals

D O C I E Total

D 100/100 0/0 0/0 0/0 0/0 100/100
M 0/0 91/100 6/0 3/0 0/0 100/100
O 0/0 100/100 0/0 0/0 0/0 100/100
C 0/0 0/0 100/100 0/0 0/0 100/100
I 0/0 0/0 0/0 100/100 0/0 100/100
V 0/0 0/0 100/100 0/0 0/0 100/100
B 0/0 0/0 0/0 100/100 0/0 100/100
E 0/0 0/0 0/0 0/0 100/100 100/100

Total 100/100 191/200 206/200 203/200 100/100

Table 6 Misclassi�cation matrix (rows are actual relation, column s detected relation) re-
sulting from Algorithm 3. Figures are quoted for network siz es of 500 nodes/4000 nodes.
Note: D=disjoint; M=meet; O=overlap; C=contains; I=insid e; V=covers; B=covered by;
E=equals

D M O C I V B E Total

D 100/100 0/0 0/0 0/0 0/0 0/0 0/0 0/0 100/100
M 0/0 98/81 0/19 1/0 1/0 0/0 0/0 0/0 100/100
O 0/0 0/0 100/100 0/0 0/0 0/0 0/0 0/0 100/100
C 0/0 0/0 0/0 97/100 0/0 3/0 0/0 0/0 100/100
I 0/0 0/0 0/0 0/0 97/100 0/0 3/0 0/0 100/100
V 0/0 0/0 0/0 0/0 0/0 100/100 0/0 0/0 100/100
B 0/0 1/0 0/0 0/0 0/0 0/0 100/100 0/0 101/100
E 0/0 0/0 0/0 0/0 0/0 0/0 0/0 100/100 100/100

Total 100/100 99/81 100/119 98/100 98/100 103/100 103/100 1 00/100

increases in accuracy with �ner spatial granularity (i.e., larger, more dense
networks), such that at 4000 nodes Table 5 indicates Algorithm 2 was operating
at perfect accuracy.

The picture was slightly more complicated in the case of the �ne topological
granularity algorithms (Algorithms 1, 3, and 4). For example, Table 6 broadly
shows the same pattern of increasing topological accuracy with �ner spatial
granularity (e.g., at 500 nodes, three contains relations were misclassi�ed as
covers; at 4000 nodes all contains relations were correctly classi�ed). However,
increasing the network size actually leads tomore instances of the meet relation
being misclassi�ed (98 out of 100 correctly classi�ed at network sizeof 500
nodes; 81 out of 100 correctly classi�ed at 4000 nodes). This pattern was
repeated for all three algorithms that operated at �ne topological granularity
(i.e., Algorithms 1, 3, and 4).

This issue arises because meet is not well-de�ned in the discrete case. Be-
cause of the �nite granularity of the geosensor networks, the boundary of the
region can never be detected directly, but rather as a node that isstrictly in-
side the region with a one-hop neighbor that is outside the region. Thus, atrue
meet in the continuous (in�nite granularity) space would always be detected
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Fig. 14 Misclassi�cations of topological relations caused by the l imited spatial granularity,
for example: a. where no node in B � A results in overlap misclassi�ed as cover; and b. where
no node in A � \ B � results in overlap misclassi�ed as disjoint (for complex ar eal object B
with disconnected components).

as disjoint in the discrete, �nite granularity case; instead regions must slightly
overlap in the continuous case in order to be detected as meet in thedis-
crete case. Note that the same is not true of the other two boundary-critical
relations introduced by the �ner granularity topological models, covers and
covered by. For example, a region that covers another in the continuous case
may also be detected as covers in the discrete case (although the converse is
not true|a region that is detected as covering another in the discr ete space
does not necessarily do so in the continuous space). Moving from lowto higher
densities of nodes, small enough overlaps to be detected as a meetrelation be-
come more likely to be detected as an overlap at �ner spatial granularities.
We shall return to this issue in the discussion and conclusions.

Investigations of all the other topological misclassi�cations revealed two
further distinct causes of misclassi�cations. In the �rst case, the limited spatial
granularity of the network and random node locations could sometimes mean
that no node happened to be located in some critical region component. For
example, Fig. 14 provides two concrete examples where the chanceabsence
of any node in B � A (Fig. 14a) or in A � \ B � (Fig. 14b) at coarse spatial
granularity leads to misclassi�cations of the actual topological relation in the
continuous space.

In the second case, even when there existed nodes in key region compo-
nents, topological misclassi�cations could occur either by the absence of direct
network connection (e.g., caused by network holes and uneven distribution of
nodes, Fig. 15a); or where network direct connections spanned two close, but
not coincident boundaries (e.g., Fig. 15b). These were still in e�ect granularity
issues, but network granularity rather than spatial granularity is sues (i.e., the
problems could potentially have been averted if di�erent network connections
had arisen).

In summary, while all the algorithms performed at high levels of accuracy,
especially for larger and more dense network sizes, the three main causes of
misclassi�cations were:
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Fig. 15 Misclassi�cations of topological relations caused by the n etwork granularity, for
example: a. where a meet is misclassi�ed as contain; and b. wh ere contain is misclassi�ed as
cover

{ the weak de�nition of meet for discrete, �nite granularity observa tions of
regions, requiring that regions in the continuous space must in factslightly
overlap to be detected as meet;

{ pure spatial granularity issues, where nodes did not happen to be located
in critical components of the regions; and

{ network granularity issues, where adverse connectivity close to boundaries
happened to obscure the true topological relation.

5 Discussion and conclusions

This paper has demonstrated how spatial queries about topological relation
between simple and complex regions can be satis�ed using decentralized algo-
rithms. The approach combines e�cient data aggregation with spatial �ltering,
targeting communication at those nodes at or near the boundary of monitored
regions. Signi�cantly, the algorithms do not depend on quantitative coordi-
nate information, only on relative neighborhood information. Because quali-
tative neighborhood information is expected to be available at the most basic
level to any geosensor network, the algorithm is well-suited to highlyresource-
constrained networks, with no access to GPS or other positioning systems.
Thus, even though we can use computational geometry to determine topolog-
ical relations between regions, this research does not require thewhole nodes
to have coordinate information.

All four algorithms were highly scalable, with overall O(n) communication
complexity and optimal load balance O(1), veri�ed through experimental sim-
ulation. Indeed, if the O(n) initialization step for each algorithm is treated
as an unavoidable component of ad hoc network establishment, then for Al-
gorithms 2{4 the overall computational complexity reduced to O(nk ), where
0:5 � k < 1 (and in our experiments 0:7 < k < 0:8). Algorithm 2 was consis-
tently amongst the most e�cient in our experiments, but at the cos t of reduced
topological granularity, yielding only �ve (rather than 8) distinct to pological
relations. It is arguable that distinguishing between the three additional topo-
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logical relations (meet versus overlap, covers verses contains, covered by versus
inside) is not of high interest in many applications. However, the detection of
�ne granularity topological relations between simple or even complexregions
(Algorithms 3 and 4) was not signi�cantly less scalable that the detection of
coarse granularity topological relations (Algorithm 2) in many experiments.

When considering the veracity of the algorithms, all the algorithms per-
formed at high levels of accuracy, identifying the correct topological relation
in the overwhelming majority of cases. However, granularity e�ects did cause
misclassi�cations, in particular with smaller, less dense networks; regions that
were small or had close boundaries when compared with the networkdensity;
and with the meet relation, which is di�cult to model adequately in discr ete
spaces. A key issue for future work is to investigate more appropriate mod-
els of topological relations between granular spatial regions monitored by a
geosensor network. This question is related to past work, for example in digi-
tal topology (e.g., [24, 38]). However, this past work relies substantially on the
regularity of neighborhoods in the raster images towards which thiswork was
targeted. The highly irregular neighborhoods in a geosensor network require
more generalized descriptions of discrete topology.

Our approach does only address topological relations between tworegions.
It is, however, not especially challenging to extend our algorithms todetermine
the topological relations between multiple regions, for example by combining
the pairwise approach used in this paper. Further work might also implement
and test the algorithms in a real sensor network with relative ease,although at
considerable �nancial cost with today's technology. A basic assumption behind
this work is that while today's geosensor networks are complex, expensive, and
typically numbered in hundreds of nodes, tomorrow's networks will be based on
cheaper technology with thousands or even millions of nodes, providing much
more spatial detail about the environment. This progress towards cheaper,
more accessible technology is very evident even over the past 5 years.

Finally, the algorithms in this paper are speci�cally designed to query
the static topological relations between regions, suitable for infrequent, one-
o� (snapshot) queries. As the frequency of queries increases, so the e�ciency
of any snapshot approach decreases. In cases where high frequency or long-
running queries are required, event-based approaches that monitor topological
changes (merging and splitting of regions) rather than snapshot-based ap-
proaches are likely to become appropriate (such as [13]). However,we argue
that these two perspectives are complementary: to satisfy the requirements of
a range of applications, algorithms for both snapshot and long-running queries
are needed. Further, long running queries typically need to be initialized using
a snapshot query, like those investigated in this paper, in order to correctly
infer the changes that are occurring.
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